Contextuality, decoherence and quantum trajectories

نویسنده

  • A. S. Sanz
چکیده

Here we analyze the relationship between quantum contextuality and decoherence in interference experiments with matter particles by means of a simple reduced quantum-trajectory model, which attempts to simulate the behavior of the projections of multi-dimensional, system-plus-environment Bohmian trajectories onto the subspace of the reduced system. This model allows us to understand the crossing of the subsystem trajectories as a combined effect of interference quenching and erasure of “which-way” information, which can be of utility to interpret decoherence effects in manydimensional systems where full Bohmian treatments become prohibitive computationally. PACS numbers: 03.65.Ta,03.65.Ca,03.65.-w,03.65.Yz Electronic address: [email protected] Electronic address: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoherence and quantum contextuality

Decoherence is the most widely accepted mechanism to explain the loss of coherence in quantum systems. Here we show how simple (quantum) trajectory–based models can help to understand the physics behind decoherence processes. In particular, we will analyze with these models the relationship between decoherence and quantum contextuality in the double–slit experiment, where two (quantum) contexts...

متن کامل

Decoherence effects on quantum Fisher information of multi-qubit W states

Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...

متن کامل

Decoherence and quantum trajectories

Decoherence is the process by which quantum systems interact and become correlated with their external environments; quantum trajectories are a powerful technique by which decohering systems can be resolved into stochastic evolutions, conditioned on different possible “measurements” of the environment. By calling on recently-developed tools from quantum information theory, we can analyze simpli...

متن کامل

A quantum trajectory description of decoherence

A complete theoretical treatment in many problems relevant to physics, chemistry, and biology requires considering the action of the environment over the system of interest. Usually the environment involves a relatively large number of degrees of freedom, this making the problem numerically intractable from a purely quantum–mechanical point of view. To overcome this drawback, a new class of qua...

متن کامل

Intrinsic decoherence dynamics in smooth Hamiltonian systems: Quantum-classical correspondence

A direct classical analog of the quantum dynamics of intrinsic decoherence in Hamiltonian systems, characterized by the time dependence of the linear entropy of the reduced density operator, is introduced. The similarities and differences between the classical and quantum decoherence dynamics of an initial quantum state are exposed using both analytical and computational results. In particular,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009